Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides.

Authors: Bennett, MR  Anglin, S  McEwan, JR  Jagoe, R  Newby, AC  Evan, GI 
Citation: Bennett MR, etal., J Clin Invest. 1994 Feb;93(2):820-8.
Pubmed: (View Article at PubMed) PMID:8113414
DOI: Full-text: DOI:10.1172/JCI117036

Restenosis after angioplasty is due predominantly to accumulation of vascular smooth muscle cells (VSMCs). The resistance of restenosis to pharmacological treatment has prompted investigation of genes involved in VSMC proliferation. We have examined the effect on VSMC proliferation of blocking expression of the c-myc proto-oncogene with antisense oligodeoxynucleotides, both in vitro and in a rat carotid artery injury model of angioplasty restenosis. Antisense c-myc oligodeoxynucleotides reduced average cell levels of c-myc mRNA and protein by 50-55% and inhibited proliferation of VSMCs when mitogenically stimulated from quiescence or when proliferating logarithmically (IC50 = 10 micrograms/ml). Corresponding sense c-myc, two-base-pair mismatch antisense c-myc, antisense alpha-actin or glyceraldehyde phosphate dehydrogenase oligodeoxynucleotides did not suppress c-myc expression or inhibit VSMC proliferation. Antisense c-myc inhibition was relieved by overexpression of an exogenous c-myc gene. After balloon catheter injury, peak c-myc mRNA expression occurred at 2 h. Antisense c-myc applied in a pluronic gel to the arterial adventitia reduced peak c-myc expression by 75% and significantly reduced neointimal formation at 14 d, compared with sense c-myc and gel application alone. We conclude that c-myc expression is required for VSMC proliferation in vitro and in the vessel wall. C-myc is a therefore a potential target for adjunctive therapy to reduce angioplasty restenosis.


Disease Annotations
Gene Ontology Annotations
Objects Annotated

Additional Information

CRRD Object Information
CRRD ID: 10059612
Created: 2015-08-20
Species: All species
Last Modified: 2015-08-20
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.