Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

Authors: Napal, L  Dai, J  Treber, M  Haro, D  Marrero, PF  Woldegiorgis, G 
Citation: Napal L, etal., J Biol Chem 2003 Sep 5;278(36):34084-9. Epub 2003 Jun 25.
Pubmed: (View Article at PubMed) PMID:12826662
DOI: Full-text: DOI:10.1074/jbc.M305826200

Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme.


Gene Ontology Annotations
Objects Annotated
Objects referenced in this article

Additional Information

CRRD Object Information
CRRD ID: 1298786
Created: 2004-06-01
Species: All species
Last Modified: 2004-06-01
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.