Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Pioglitazone, a thiazolidinedione derivative, attenuates left ventricular hypertrophy and fibrosis in salt-sensitive hypertension.

Authors: Nakamoto, M  Ohya, Y  Shinzato, T  Mano, R  Yamazato, M  Sakima, A  Takishita, S 
Citation: Nakamoto M, etal., Hypertens Res. 2008 Feb;31(2):353-61.
Pubmed: (View Article at PubMed) PMID:18360056
DOI: Full-text: DOI:10.1291/hypres.31.353

Thiazolidinediones, which stimulate peroxisome proliferator-activated receptor gamma, have been shown to prevent cardiovascular injury. However, little is known about their effects on salt-sensitive hypertension. We thus investigated whether or not pioglitazone affects left ventricular (LV) hypertrophy in Dahl salt-sensitive rats, then compared its effects to those of an angiotensin II receptor blocker, candesartan. Rats were used at 16 weeks of age after they had been fed either a low-salt (0.3%; DSL) or high-salt (8%; DSH) diet for 10 weeks; some of the DSH rats were treated with pioglitazone (10 mg/kg/day) or candesartan (4 mg/kg/day). Both drugs decreased the elevated blood pressure in DSH rats, although it was still higher than in DSL rats. Both drugs decreased plasma insulin levels, but neither affected plasma glucose levels. The thiobarbituric acid reactive substance level in the LV was decreased by both drugs. LV hypertrophy evaluated by echocardiography in DSH rats was nearly normalized by both drugs, whereas only candesartan decreased LV diameter. In histological analysis, both drugs ameliorated LV fibrosis and myocardial cell hypertrophy. Both drugs decreased elevated gene expression levels of transforming growth factor-beta1 and collagen type I, although the pioglitazone action was slightly modest. The metalloproteinase activity was increased in DSH rats, but both drugs decreased this level. Taken together, these findings indicate that pioglitazone reduced LV hypertrophy and fibrosis in salt-sensitive hypertension. Improvement in blood pressure, insulin level, and oxidative stress may be associated with this beneficial action of pioglitazone.

Annotation

Disease Annotations
Objects Annotated

Additional Information

 
CRRD Object Information
CRRD ID: 2301893
Created: 2008-11-05
Species: All species
Last Modified: 2008-11-05
Status: ACTIVE



NHLBI Logo

RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.