Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Tissue-specific programming expression of glucocorticoid receptors and 11 beta-HSDs by maternal perinatal undernutrition in the HPA axis of adult male rats.

Authors: Dutriez-Casteloot, I  Breton, C  Coupe, B  Hawchar, O  Enache, M  Dickes-Coopman, A  Keyzer, Y  Deloof, S  Lesage, J  Vieau, D 
Citation: Dutriez-Casteloot I, etal., Horm Metab Res. 2008 Apr;40(4):257-61.
Pubmed: (View Article at PubMed) PMID:18548384
DOI: Full-text: DOI:10.1055/s-2008-1058064

Maternal undernutrition leads to intrauterine growth retardation and predisposes to the development of pathologies in adulthood. The hypothalamo-pituitary-adrenal axis is a major target of early-life programming. We showed previously that perinatal maternal 50% food restriction leads to hypothalamo-pituitary-adrenal axis hyperactivity and disturbs glucocorticoid feedback in adult male rats. To try to better understand these alterations, we studied several factors involved in corticosterone sensitivity. We showed that unlike the restricted expression of 11 beta-HSD2 mRNA, the 11 beta-HSD1, glucocorticoid, and mineralocorticoid receptor genes are widely distributed in rat. In contrast to the hypothalamus, we confirmed that maternal undernutrition modulates hippocampal corticosterone receptor balance and leads to increased 11 beta-HSD1 gene expression. In the pituitary, rats exhibited a huge increase in both mRNA and mineralocorticoid receptor binding capacities as well as decreased 11 beta-HSD1/11 beta-HSD2 gene expression. Using IN SITU hybridization, we showed that the mineralocorticoid receptor gene was expressed in rat corticotroph cells and by other adenopituitary cells. In the adrenal gland, maternal food restriction decreased 11beta-HSD2 mRNA. This study demonstrated that maternal food restriction has both long-term and tissue-specific effects on gene expression of factors involved in glucocorticoid sensitivity and that it could contribute, via glucocorticoid excess, to the development of adult diseases.


Gene Ontology Annotations
Objects Annotated

Additional Information

CRRD Object Information
CRRD ID: 2308938
Created: 2009-06-18
Species: All species
Last Modified: 2009-06-18
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.