Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Characterization of the motor activity of mammalian myosin VIIA.

Authors: Inoue, A  Ikebe, M 
Citation: Inoue A and Ikebe M, J Biol Chem 2003 Feb 14;278(7):5478-87.
Pubmed: (View Article at PubMed) PMID:12466270
DOI: Full-text: DOI:10.1074/jbc.M210489200

Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor.

Annotation

Gene Ontology Annotations
Objects Annotated

Additional Information

 
CRRD Object Information
CRRD ID: 633398
Created: 2003-08-29
Species: All species
Last Modified: 2003-08-29
Status: ACTIVE



NHLBI Logo

RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.