Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling.

Authors: Sunters, A  Armstrong, VJ  Zaman, G  Kypta, RM  Kawano, Y  Lanyon, LE  Price, JS 
Citation: Sunters A, etal., J Biol Chem. 2010 Mar 19;285(12):8743-58. doi: 10.1074/jbc.M109.027086. Epub 2009 Dec 30.
Pubmed: (View Article at PubMed) PMID:20042609
DOI: Full-text: DOI:10.1074/jbc.M109.027086

The capacity of bones to adjust their mass and architecture to withstand the loads of everyday activity derives from the ability of their resident cells to respond appropriately to the strains engendered. To elucidate the mechanisms of strain responsiveness in bone cells, we investigated in vitro the responses of primary mouse osteoblasts and UMR-106 osteoblast-like cells to a single period of dynamic strain. This stimulates a cascade of events, including activation of insulin-like growth factor I receptor (IGF-IR), phosphatidylinositol 3-kinase-mediated phosphorylation of AKT, inhibition of GSK-3beta, increased activation of beta-catenin, and associated lymphoid-enhancing factor/T cell factor-mediated transcription. Initiation of this pathway does not involve the Wnt/LRP5/Frizzled receptor and does not culminate in increased IGF transcription. The effect of strain on IGF-IR is mimicked by exogenous des-(1-3)IGF-I and is blocked by the IGF-IR inhibitor H1356. Inhibition of strain-related prostanoid and nitric oxide production inhibits strain-related (and basal) AKT activity, but their separate ectopic administration does not mimic it. Strain-related IGF-IR activation of AKT requires estrogen receptor alpha (ERalpha) with which IGF-1R physically associates. The ER blocker ICI 182,780 increases the concentration of des-(1-3)IGF-I necessary to activate this cascade, whereas estrogen inhibits both basal AKT activity and its activation by des-(1-3)IGF-I. These data suggest an initial cascade of strain-related events in osteoblasts in which strain activates IGF-IR, in association with ERalpha, so initiating phosphatidylinositol 3-kinase/AKT-dependent activation of beta-catenin and altered lymphoid-enhancing factor/T cell factor transcription. This cascade requires prostanoid/nitric oxide production and is independent of Wnt/LRP5.

Annotation

Gene Ontology Annotations
Molecular Pathway Annotations
Objects Annotated

Additional Information

 
CRRD Object Information
CRRD ID: 7242068
Created: 2013-03-26
Species: All species
Last Modified: 2013-03-26
Status: ACTIVE



NHLBI Logo

RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.