Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Photoaffinity labeling and purification of ZG-16p, a high-affinity dihydropyridine binding protein of rat pancreatic zymogen granule membranes that regulates a K(+)-selective conductance.

Authors: Braun, M  Thevenod, F 
Citation: Braun M and Thevenod F, Mol Pharmacol 2000 Feb;57(2):308-16.
Pubmed: (View Article at PubMed) PMID:10648640

In rat pancreatic zymogen granules (ZG), an ATP-sensitive K(+) conductance and a Cl(-) conductance have been characterized that are inversely regulated by an approximately 65-kDa multidrug resistance P-glycoprotein (mdr1) gene product. In search of a label for purification of this protein, we found that the dihydropyridine derivative (-)-[(3)H]BZDC-DHP, a recently developed high-affinity ligand for Mdr1, binds with similar affinity to ZG membranes (ZGM) (K(d) = 6.2 nM). Binding was inhibited by nanomolar concentrations of the L-type Ca(2+) channel blockers azidopine and verapamil and by micromolar concentrations of the K(+) channel blockers glibenclamide and quinidine. Inhibition by glibenclamide was noncompetitive. The Mdr1 modulators cyclosporin A and vinblastine did not inhibit binding, which is different from Mdr1. In addition, only (+/-)-BZDC-DHP, azidopine, and verapamil selectively inhibited the K(+) conductance in ZGs, whereas the Cl(-) conductance was not affected. In photoaffinity labeling experiments, (-)-[(3)H]BZDC-DHP surprisingly specifically and selectively labeled a approximately 19-kDa protein in ZGM with a pharmacological profile identical with the high-affinity binding site but did not label a 65-kDa protein. The 19-kDa protein was purified by ion exchange chromatography and SDS-polyacrylamide gel electrophoresis and sequenced. The sequence obtained corresponds to ZG-16p, a recently cloned ZG protein with no apparent homology to Mdr1. The identity of the 19-kDa protein was confirmed by immunoprecipitation of (-)-[(3)H]BZDC-DHP-labeled ZGM with an anti-ZG-16p antibody. Furthermore, it is shown that ZG-16p is associated with the ZGM. We propose that ZG-16p, as part of the submembranous granule matrix, regulates the ATP-sensitive K(+) conductance of ZGs.

Annotation

Gene Ontology Annotations
Objects Annotated

Additional Information

 
CRRD Object Information
CRRD ID: 727222
Created: 2003-10-28
Species: All species
Last Modified: 2003-10-28
Status: ACTIVE



NHLBI Logo

RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.