Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons.

Authors: Henriquez, B  Bustos, FJ  Aguilar, R  Becerra, A  Simon, F  Montecino, M  Van Zundert, B 
Citation: Henriquez B, etal., Mol Cell Neurosci. 2013 Nov;57:130-43. doi: 10.1016/j.mcn.2013.07.012. Epub 2013 Aug 8.
Pubmed: (View Article at PubMed) PMID:23932971
DOI: Full-text: DOI:10.1016/j.mcn.2013.07.012

Polycomb Repressive Complex 2 (PRC2) mediates transcriptional silencing by catalyzing histone H3 lysine 27 trimethylation (H3K27me3), but its role in the maturation of postmitotic mammalian neurons remains largely unknown. We report that the PRC2 paralogs Ezh1 and Ezh2 are differentially expressed during hippocampal development. We show that depletion of Ezh2 leads to increased expression of PSD-95, a critical plasticity gene, and that reduced PSD-95 gene transcription is correlated with enrichment of Ezh2 at the PSD-95 gene promoter; however, the H3K27me3 epigenetic mark is not present at the PSD-95 gene promoter, likely due to the antagonizing effects of the H3S28P and H3K27Ac marks and the activity of the H3K27 demethylases JMJD3 and UTX. In contrast, increased PSD-95 gene transcription is accompanied by the presence of Ezh1 and elongation-engaged RNA Polymerase II complexes at the PSD-95 gene promoter, while knock-down of Ezh1 reduces PSD-95 transcription. These results indicate that Ezh1 and Ezh2 have antagonistic roles in regulating PSD-95 transcription.


Gene Ontology Annotations
Objects Annotated

Additional Information

CRRD Object Information
CRRD ID: 9587811
Created: 2014-10-20
Species: All species
Last Modified: 2014-10-20
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.