Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children.

Authors: Lundh, M  Christensen, DP  Damgaard Nielsen, M  Richardson, SJ  Dahllof, MS  Skovgaard, T  Berthelsen, J  Dinarello, CA  Stevenazzi, A  Mascagni, P  Grunnet, LG  Morgan, NG  Mandrup-Poulsen, T 
Citation: Lundh M, etal., Diabetologia. 2012 Sep;55(9):2421-31. doi: 10.1007/s00125-012-2615-0. Epub 2012 Jul 7.
Pubmed: (View Article at PubMed) PMID:22772764
DOI: Full-text: DOI:10.1007/s00125-012-2615-0

AIMS/HYPOTHESIS: Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1-11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs mediate inflammatory beta cell damage and how the islet content of these HDACs is regulated in recent-onset type 1 diabetes. METHODS: The rat beta cell line INS-1 and dispersed primary islets from rats, either wild type or HDAC1-3 deficient, were exposed to cytokines and HDACi. Molecular mechanisms were investigated using real-time PCR, chromatin immunoprecipitation and ELISA assays. Pancreases from healthy children and children with type 1 diabetes were assessed using immunohistochemistry and immunofluorescence. RESULTS: Screening of 19 compounds with different HDAC selectivity revealed that inhibitors of HDAC1, -2 and -3 rescued INS-1 cells from inflammatory damage. Small hairpin RNAs against HDAC1 and -3, but not HDAC2, reduced pro-inflammatory cytokine-induced beta cell apoptosis in INS-1 and primary rat islets. The protective properties of specific HDAC knock-down correlated with attenuated cytokine-induced iNos expression but not with altered expression of the pro-inflammatory mediators Il1alpha, Il1beta, Tnfalpha or Cxcl2. HDAC3 knock-down reduced nuclear factor kappaB binding to the iNos promoter and HDAC1 knock-down restored insulin secretion. In pancreatic sections from children with type 1 diabetes of recent onset, HDAC1 was upregulated in beta cells whereas HDAC2 and -3 were downregulated in comparison with five paediatric controls. CONCLUSIONS/INTERPRETATION: These data demonstrate non-redundant functions of islet class I HDACs and suggest that targeting HDAC1 and HDAC3 would provide optimal protection of beta cell mass and function in clinical islet transplantation and recent-onset type 1 diabetic patients.


Disease Annotations
Gene Ontology Annotations
Objects Annotated

Additional Information

CRRD Object Information
CRRD ID: 9590127
Created: 2014-11-13
Species: All species
Last Modified: 2014-11-13
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.